首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14781篇
  免费   1025篇
  国内免费   842篇
化学   192篇
晶体学   3篇
力学   1462篇
综合类   171篇
数学   13709篇
物理学   1111篇
  2024年   20篇
  2023年   143篇
  2022年   161篇
  2021年   201篇
  2020年   325篇
  2019年   340篇
  2018年   387篇
  2017年   400篇
  2016年   385篇
  2015年   292篇
  2014年   624篇
  2013年   1197篇
  2012年   684篇
  2011年   790篇
  2010年   702篇
  2009年   967篇
  2008年   1020篇
  2007年   1036篇
  2006年   929篇
  2005年   718篇
  2004年   617篇
  2003年   686篇
  2002年   599篇
  2001年   442篇
  2000年   435篇
  1999年   389篇
  1998年   359篇
  1997年   320篇
  1996年   244篇
  1995年   210篇
  1994年   143篇
  1993年   127篇
  1992年   120篇
  1991年   107篇
  1990年   81篇
  1989年   39篇
  1988年   43篇
  1987年   38篇
  1986年   43篇
  1985年   54篇
  1984年   54篇
  1983年   29篇
  1982年   28篇
  1981年   27篇
  1980年   18篇
  1979年   21篇
  1978年   15篇
  1977年   15篇
  1976年   9篇
  1936年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In this paper, we propose a capacity scaling heuristic using a column generation and row generation technique to address the multicommodity capacitated network design problem. The capacity scaling heuristic is an approximate iterative solution method for capacitated network problems based on changing arc capacities, which depend on flow volumes on the arcs. By combining a column and row generation technique and a strong formulation including forcing constraints, this heuristic derives high quality results, and computational effort can be reduced considerably. The capacity scaling heuristic offers one of the best current results among approximate solution algorithms designed to address the multicommodity capacitated network design problem.  相似文献   
992.
The equilibrium problem (EP) can be reformulated as an unconstrained minimization problem through the generalized D-gap function. In this paper, we propose an algorithm for minimizing the problem and analyze some convergence properties of the proposed algorithm. Under some reasonable conditions, we show that the iteration sequence generated by the algorithm is globally convergent and converges to a solution to the EP and the generalized D-gap function provides a global error bound for the algorithm.  相似文献   
993.
A coefficient inverse problem of the one-dimensional parabolic equation is solved by a high-order compact finite difference method in this paper. The problem of recovering a time-dependent coefficient in a parabolic partial differential equation has attracted considerable attention recently. While many theoretical results regarding the existence and uniqueness of the solution are obtained, the development of efficient and accurate numerical methods is still far from satisfactory. In this paper a fourth-order efficient numerical method is proposed to calculate the function u(x,t) and the unknown coefficient a(t) in a parabolic partial differential equation. Several numerical examples are presented to demonstrate the efficiency and accuracy of the numerical method.  相似文献   
994.
Cox and Matthews [S.M. Cox, P.C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2002) 430–455] developed a class of Exponential Time Differencing Runge–Kutta schemes (ETDRK) for nonlinear parabolic equations; Kassam and Trefethen [A.K. Kassam, Ll. N. Trefethen, Fourth-order time stepping for stiff pdes, SIAM J. Sci. Comput. 26 (2005) 1214–1233] have shown that these schemes can suffer from numerical instability and they proposed a modified form of the fourth-order (ETDRK4) scheme. They use complex contour integration to implement these schemes in a way that avoids inaccuracies when inverting matrix polynomials, but this approach creates new difficulties in choosing and evaluating the contour for larger problems. Neither treatment addresses problems with nonsmooth data, where spurious oscillations can swamp the numerical approximations if one does not treat the problem carefully. Such problems with irregular initial data or mismatched initial and boundary conditions are important in various applications, including computational chemistry and financial engineering. We introduce a new version of the fourth-order Cox–Matthews, Kassam–Trefethen ETDRK4 scheme designed to eliminate the remaining computational difficulties. This new scheme utilizes an exponential time differencing Runge–Kutta ETDRK scheme using a diagonal Padé approximation of matrix exponential functions, while to deal with the problem of nonsmooth data we use several steps of an ETDRK scheme using a sub-diagonal Padé formula. The new algorithm improves computational efficiency with respect to evaluation of the high degree polynomial functions of matrices, having an advantage of splitting the matrix polynomial inversion problem into a sum of linear problems that can be solved in parallel. In this approach it is only required that several backward Euler linear problems be solved, in serial or parallel. Numerical experiments are described to support the new scheme.  相似文献   
995.
We formulate the fixed-charge multiple knapsack problem (FCMKP) as an extension of the multiple knapsack problem (MKP). The Lagrangian relaxation problem is easily solved, and together with a greedy heuristic we obtain a pair of upper and lower bounds quickly. We make use of these bounds in the pegging test to reduce the problem size. We also present a branch-and-bound (B&B) algorithm to solve FCMKP to optimality. This algorithm exploits the Lagrangian upper bound as well as the pegging result for pruning, and at each terminal subproblem solve MKP exactly by invoking MULKNAP code developed by Pisinger [Pisinger, D., 1999. An exact algorithm for large multiple knapsack problems. European Journal of Operational Research 114, 528–541]. As a result, we are able to solve almost all test problems with up to 32,000 items and 50 knapsacks within a few seconds on an ordinary computing environment, although the algorithm remains some weakness for small instances with relatively many knapsacks.  相似文献   
996.
In this paper, we propose an iterative scheme for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a strict pseudo-contraction mapping in the setting of real Hilbert spaces. We establish some weak and strong convergence theorems of the sequences generated by our proposed scheme. Our results combine the ideas of Marino and Xu’s result [G. Marino, H.K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007) 336–346], and Takahashi and Takahashi’s result [S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007) 506–515]. In particular, necessary and sufficient conditions for strong convergence of our iterative scheme are obtained.  相似文献   
997.
Tikhonov regularization for large-scale linear ill-posed problems is commonly implemented by determining a partial Lanczos bidiagonalization of the matrix of the given system of equations. This paper explores the possibility of instead computing a partial Arnoldi decomposition of the given matrix. Computed examples illustrate that this approach may require fewer matrix–vector product evaluations and, therefore, less arithmetic work. Moreover, the proposed range-restricted Arnoldi–Tikhonov regularization method does not require the adjoint matrix and, hence, is convenient to use for problems for which the adjoint is difficult to evaluate.  相似文献   
998.
The parameterized Uzawa preconditioners for saddle point problems are studied in this paper. The eigenvalues of the preconditioned matrix are located in (0, 2) by choosing the suitable parameters. Furthermore, we give two strategies to optimize the rate of convergence by finding the suitable values of parameters. Numerical computations show that the parameterized Uzawa preconditioners can lead to practical and effective preconditioned GMRES methods for solving the saddle point problems.  相似文献   
999.
During numerical time integration, the accuracy of the numerical solution obtained with a given step size often proves unsatisfactory. In this case one usually reduces the step size and repeats the computation, while the results obtained for the coarser grid are not used. However, we can also combine the two solutions and obtain a better result. This idea is based on the Richardson extrapolation, a general technique for increasing the order of an approximation method. This technique also allows us to estimate the absolute error of the underlying method. In this paper we apply Richardson extrapolation to the sequential splitting, and investigate the performance of the resulting scheme on several test examples.  相似文献   
1000.
In this paper, the Cauchy problem for the Helmholtz equation is investigated. By Green’s formulation, the problem can be transformed into a moment problem. Then we propose a modified Tikhonov regularization algorithm for obtaining an approximate solution to the Neumann data on the unspecified boundary. Error estimation and convergence analysis have been given. Finally, we present numerical results for several examples and show the effectiveness of the proposed method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号